AMENDMENT TO H.R. 3628, AS REPORTED OFFERED BY MS. LEGER FERNANDEZ OF NEW MEXICO

1 SEC. 2. DEVELOPMENT OF GUIDELINES AND BEST PRAC-

Strike section 2 and insert the following:

2	TICES FOR ELECTRIC UTILITY INTEGRATED
3	RESOURCE PLANNING.
4	(a) In General.—The Secretary, in consultation
5	with State public utility commissions, State energy offices,
6	owners or operators of electric utilities (including investor-
7	owned utilities, municipal utilities, and electric coopera-
8	tives), balancing area authorities, Transmission Organiza-
9	tions, and other relevant stakeholders, shall develop guide-
10	lines and best practices for integrated resource planning
11	of the electricity system.
12	(b) Requirements.—
13	(1) Key issues.—The guidelines and best
14	practices developed under subsection (a) shall ad-
15	dress key issues related to integrated resource plan-
16	ning. In developing the guidelines and best practices,
17	the Secretary shall consider, at a minimum, the fol-
18	lowing issues, while retaining discretion to incor-
19	porate additional considerations and to refine the

1	scope, level of detail, and implementation approaches
2	for each issue as appropriate:
3	(A) Developing capacity expansion mod-
4	eling and resource adequacy analysis in an
5	iterative manner to improve integrated resource
6	planning by ensuring the expanded electricity
7	system achieves resource adequacy while mini-
8	mizing costs.
9	(B) The consideration of a wide range of
10	alternatives for capacity expansion models to
11	meet resource adequacy targets, including the
12	traditional expansion of electricity generation
13	and transmission capacity and the use of novel
14	grid-enhancing technologies, small and large-
15	scale storage, distributed energy resources, be-
16	hind-the-meter interventions, and demand-side
17	interventions.
18	(C) Explicit consideration of electric trans-
19	mission in capacity expansion modeling and its
20	contribution to resource adequacy and reli-
21	ability of electricity systems.
22	(D) The use of an interregional planning
23	approach in capacity expansion modeling to
24	evaluate the resource adequacy benefits of ca-
25	pacity resource sharing across regions, includ-

1	ing through collaboration between States, bal-
2	ancing area authorities, electric utilities, Trans-
3	mission Organizations, and other relevant
4	stakeholders.
5	(E) The integration of technical, financial,
6	and regulatory information from other fuel sup-
7	ply systems, such as the natural gas network.
8	(F) The use of scenario analysis developed
9	using capacity expansion modeling and trans-
10	mission expansion modeling to represent a full
11	range of future characteristics of the electricity
12	system, including the availability of different
13	electricity generating and storage resources,
14	and transmission infrastructure.
15	(G) The use of probabilistic models in re-
16	source adequacy analysis to account for varia-
17	bility and uncertainty in the supply and de-
18	mand of electricity, including the impact of ex-
19	treme weather event scenarios, forecasting er-
20	rors, fuel prices, and other uncertainties on
21	such supply and demand.
22	(H) The use of historical weather data and
23	forward-looking meteorological projections, in-
24	cluding with respect to extreme weather event
25	scenarios, to account for the variability in elec-

1	tricity demand, electricity generation from indi-
2	vidual or groups of electricity generators, and
3	electricity system outages to assess resource
4	adequacy.
5	(I) The use of multiple resource adequacy
6	metrics for assessing resource adequacy to ac-
7	count for the magnitudes, frequencies, and du-
8	rations of potential events that stress the elec-
9	tricity system.
10	(J) The use of scorecards that summarize
11	the costs and a wide range of benefits of sce-
12	narios developed through the integrated re-
13	source planning process, including—
14	(i) costs of infrastructure investments:
15	(ii) environmental sustainability;
16	(iii) resource adequacy and reliability;
17	(iv) economic impacts; and
18	(v) other costs and benefits that are
19	relevant to the decision-making objectives
20	of States, electric utilities, balancing area
21	authorities, Transmission Organizations,
22	and other relevant stakeholders.
23	(K) The use of rigorous mechanisms for
24	capacity accreditation to measure the capacity

1	value of possible investments that support re-
2	source adequacy, including—
3	(i) capacity values for both conven-
4	tional and emerging generation resources,
5	including distributed energy resources and
6	behind-the-meter interventions;
7	(ii) capacity values for demand-side
8	interventions; and
9	(iii) capacity values for transmission
10	infrastructure upgrades and grid-enhanc-
11	ing technologies that enable the deliver-
12	ability of generating capacity from remote
13	or otherwise constrained generation re-
14	sources.
15	(L) The use of probabilistic metrics to
16	measure capacity values that account for prob-
17	ability distributions of the magnitudes, fre-
18	quencies, and durations of potential events that
19	affect the availability of—
20	(i) conventional and emerging genera-
21	tion resources, behind-the-meter interven-
22	tions, and demand-side interventions; and
23	(ii) transmission infrastructure up-
24	grades and grid-enhancing technologies
25	that enable the deliverability of electricity

1	from remote or otherwise constrained gen-
2	eration resources.
3	(2) State treatment of integrated re-
4	SOURCE PLANS.—In developing the guidelines and
5	best practices under subsection (a), the Secretary
6	shall consider providing guidance on how State pub-
7	lic utility commissions and State energy offices may
8	review and respond to integrated resource plans, in-
9	cluding guidance on—
10	(A) opportunities for public engagement
11	and comment, including well-designed stake-
12	holder involvement processes with several op-
13	portunities for feedback and transparent access
14	to data inputs, models, licenses, and other re-
15	quirements for relevant stakeholders to rep-
16	licate modeling outputs from integrated re-
17	source planning; and
18	(B) the connection between integrated re-
19	source planning outcomes and regulatory ac-
20	tions, such as procurement decisions, certifi-
21	cates of public convenience and necessity, and
22	general rate cases.
23	(e) Publication of Guidelines and Best Prac-
24	TICES.—Not later than 2 years after the date of enact-
25	ment of this Act, the Secretary shall publish on a publicly

1	accessible website of the Department of Energy the guide-
2	lines and best practices developed under subsection (a)
3	(d) Periodic Evaluations and Revisions.—The
4	Secretary shall, not less frequently than once every 5
5	years—
6	(1) evaluate the guidelines and best practices
7	published under this section; and
8	(2) revise such guidelines and best practices
9	and publish such revised guidelines and best prac-
10	tices in accordance with this section.
11	(e) Definitions.—In this section:
12	(1) Balancing area authority.—The term
13	"balancing area authority" means the responsible
14	entity that—
15	(A) integrates resource plans in advance of
16	real-time operations;
17	(B) maintains the balance between elec-
18	tricity demand, electricity supply, and scheduled
19	interchange within the geographic area of the
20	responsible entity; and
21	(C) supports interconnection frequency in
22	real-time.
23	(2) Behind-the-meter intervention.—The
24	term "hehind-the-meter intervention"

1	(A) means an action or technology that re-
2	duces or shifts electricity demand or provides
3	local electricity generation or storage capacity
4	at the site of a customer; and
5	(B) includes—
6	(i) an energy efficiency upgrade, a
7	residential solar panel, an energy storage
8	system, and the actions taken under a de-
9	mand response program; and
10	(ii) interventions that help to reduce
11	strain on the electricity system and im-
12	prove the reliability of the electricity sys-
13	tem during peak demand periods or emer-
14	gencies.
15	(3) Capacity accreditation.—The term "ca-
16	pacity accreditation" means the process of deter-
17	mining a capacity value.
18	(4) CAPACITY EXPANSION MODELING.—The
19	term "capacity expansion modeling" means mathe-
20	matical modeling to identify the least cost invest-
21	ments in generation, storage, behind-the-meter inter-
22	ventions, distributed resource, and transmission in-
23	frastructure required to meet future electricity de-
24	mand, subject to fuel prices, technology cost and

1	performance, policy and regulation, and other con-
2	straints and conditions.
3	(5) Capacity value.—The term "capacity
4	value''—
5	(A) means a measure of the contribution
6	to resource adequacy by—
7	(i) a conventional or emerging gener-
8	ating resource, behind-the-meter interven-
9	tion, or demand-side intervention; or
10	(ii) a transmission infrastructure up-
11	grade or grid-enhancing technology that
12	enables the deliverability of electricity from
13	remote or otherwise constrained generation
14	resources; and
15	(B) includes probabilistic metrics such as
16	effective load-carrying capacity, equivalent firm
17	capacity, and equivalent conventional power.
18	(6) DISTRIBUTED ENERGY RESOURCE.—The
19	term "distributed energy resource" means a small-
20	scale electricity generation or storage system that is
21	located close to the point of use, such as a rooftop
22	solar panel, home energy storage system, or commu-
23	nity wind power system.
24	(7) Electric cooperative.—The term "elec-
25	tric cooperative" means a not-for-profit entity that—

1	(A) provides electricity to members of the
2	entity; and
3	(B) is owned and operated by such mem-
4	bers.
5	(8) Grid-enhancing technology.—The term
6	"grid-enhancing technology"—
7	(A) means a technology designed to im-
8	prove the reliability, efficiency, or flexibility of
9	the electricity system; and
10	(B) includes a smart grid technology, an
11	energy storage system, and an advanced grid
12	management system.
13	(9) Integrated resource planning.—The
14	term "integrated resource planning" has the mean-
15	ing given such term in section 3 of the Public Utility
16	Regulatory Policies Act of 1978 (16 U.S.C. 2602).
17	(10) Municipal utility.—The term "munic-
18	ipal utility" means a municipal corporation that op-
19	erates facilities used to generate, purchase, transmit,
20	or distribute electricity to consumers.
21	(11) RESOURCE ADEQUACY.—The term "re-
22	source adequacy' means the ability of the electricity
23	system to maintain sufficient, available generating,
24	storage, and transmitting capacity and supporting
25	infrastructure to meet forecasted electricity demand

1	and system reliability requirements under a range of
2	expected and adverse weather-sensitive conditions,
3	including peak load events, generation availability,
4	and unplanned outages.
5	(12) RESOURCE ADEQUACY METRIC.—The term
6	"resource adequacy metric"—
7	(A) means a quantitative measure of the
8	resource adequacy of the electricity system; and
9	(B) includes metrics derived from prob-
10	abilistic analysis, such as loss-of-load expecta-
11	tion, loss-of-load hours, loss-of-load days, loss-
12	of-load years, loss-of-load probability, loss-of-
13	load events, expected unserved energy, and nor-
14	malized expected unserved energy.
15	(13) Secretary.—The term "Secretary"
16	means the Secretary of Energy, acting through the
17	head of the Office of Electricity of the Department
18	of Energy.
19	(14) Transmission organization.—The term
20	"Transmission Organization" has the meaning given
21	such term in section 3 of the Federal Power Act (16
22	U.S.C. 796).

