AMENDMENT TO RULES COMM. PRINT 118–36 OFFERED BY MR. KEATING OF MASSACHUSETTS

At the end of subtitle B of title XVII, add the following new section:

1	SEC. 17 STRATEGY TO STRENGTHEN NUCLEAR ENERGY
2	COOPERATION.
3	(a) Strategy Required.—The Secretary of State,
4	in consultation with the Secretary of Energy and the
5	heads of other relevant Federal departments and agencies,
6	shall develop a strategy to strengthen United States-Euro-
7	pean nuclear energy cooperation and combat Russian ma-
8	lign influence in the nuclear energy sector in Europe.
9	(b) Elements.—The strategy required by subsection
10	(a) shall include, at a minimum, the following elements:
11	(1) An overview and assessment of the Sec-
12	retary of State's efforts to broaden participation by
13	United States nuclear industry entities in Europe
14	and promote the accessibility and competitiveness of
15	United States, European, and partner technologies
16	and services against Russian and Chinese tech-
17	nologies in Europe.
18	(2) An overview of different nuclear reactor
19	types that are currently deployed or under regu-

1	latory review in Europe, including large light-water
2	reactors, small modular light-water reactors, and
3	non-light-water reactors, and—
4	(A) what role, if any, each reactor type
5	could have in reducing Russia's influence over
6	European energy supply by 2030, 2035, and
7	2040;
8	(B) challenges that each reactor type may
9	face to rapid deployment, including costs, mar-
10	ket barriers to first-of-a-kind designs, supply
11	chain constraints, and regulatory requirements;
12	(C) the impacts of each reactor type on
13	maintaining strong nonproliferation standards,
14	including the minimization of weapons-usable
15	nuclear material; and
16	(D) opportunities for the use of United
17	States, European, and partner technologies and
18	services in the deployment or potential deploy-
19	ment of each reactor type.
20	(3) An overview of different fuel cycles that are
21	currently deployed or under consideration in Europe,
22	including use of low enriched uranium, including
23	high assay low enriched uranium, and spent fuel re-
24	processing, along with an analysis of the implica-
25	tions of each fuel cycle on—

1	(A) reducing and eliminating Russia's
2	market share in Europe for uranium, conver-
3	sion, enrichment, and reactor fuel between now
4	and 2030;
5	(B) achieving long-term energy security
6	free of Russian influence; and
7	(C) maintaining strong nonproliferation
8	standards, including the minimization of weap-
9	ons-usable material.
10	(4) An overview of nuclear reactor designs and
11	fuel cycle infrastructure that the United States Gov-
12	ernment is currently funding the development of,
13	and—
14	(A) the potential, if any, that each of these
15	technologies have to decrease or eliminate Rus-
16	sia's market share in the United States and
17	Europe for nuclear power reactors, uranium
18	mining and milling, conversion, enrichment, and
19	fuel fabrication, in the short, medium, and long
20	terms;
21	(B) the impact of these technologies on the
22	minimization of weapons-usable nuclear mate-
23	rial, including the use of highly enriched ura-
24	nium or plutonium fuels: and

1	(C) an assessment of the use cases for
2	each of these designs and fuel cycles.
3	(5) An overview of the United States Govern-
4	ment's diplomatic engagements regarding the nu-
5	clear energy sector in Europe.
6	(6) A list of countries in Europe with active nu-
7	clear power programs, and—
8	(A) an analysis of each country's nuclear
9	energy policy;
10	(B) an overview of existing areas of co-
11	operation with regards to nuclear energy be-
12	tween each country and—
13	(i) the United States;
14	(ii) other European and friendly coun-
15	tries; and
16	(iii) adversarial countries including
17	China and Russia; and
18	(C) an overview of potential areas of future
19	cooperation between each country and the
20	United States with regards to nuclear energy.
21	(7) An overview of Russian and Chinese influ-
22	ence in the European nuclear energy sector.
23	(8) An overview of how the United States Gov-
24	ernment is working with allies and partners to
25	counter Russian malign influence within the Euro-

1	pean energy sector to include steps taken to counter
2	Russian influence in the mining and milling, conver-
3	sion, enrichment, and fuel fabrication processes as
4	well as in reactor construction.
5	(9) An overview of how the United States Gov-
6	ernment balances the urgent strategic need for col-
7	laboration with allies and partners on countering
8	Russia's influence on nuclear energy in Europe, with
9	commercial competitiveness issues that may arise be-
10	tween United States companies and companies in
11	Europe, Canada, Japan, and the Republic of Korea.
12	(10) An assessment of Rosatom's role in Rus-
13	sia's energy sector, to include an overview of
14	strengths and vulnerabilities of the conglomerate.
15	(c) Submission.—Not later than 120 days after the
16	date of the enactment of this Act, the Secretary of State
17	shall submit to the appropriate congressional committees
18	the strategy required by subsection (a).
19	(d) FORM.—The strategy required by subsection (a)
20	shall be submitted in unclassified form, but may include
21	a separate, classified annex.
22	(e) Definitions.—In this section:
23	(1) The term "appropriate congressional com-
24	mittees" means—

1	(A) the Committee on Foreign Relations
2	and the Committee on Energy and Natural Re-
3	sources of the Senate; and
4	(B) the Committee on Foreign Affairs and
5	the Committee on Energy and Commerce of the
6	House of Representatives.
7	(2) The term "high assay low enriched ura-
8	nium" means uranium enriched so that the con-
9	centration of the fissile isotope uranium-235 (U-
10	235) is between 5 percent and 20 percent of the
11	mass of uranium.
12	(3) The term "low enriched uranium" means
13	fuel in which the weight percent of U-235 in the
14	uranium is less than 20 percent.

