AMENDMENT TO THE RULES COMMITTEE PRINT FOR H.R. 8

OFFERED BY MRS. ELLMERS OF NORTH CAROLINA

At the end of subtitle A of title I, add the following:

1	SEC. 11 STATEMENT OF POLICY ON GRID MODERNIZA-
2	TION.
3	It is the policy of the United States to promote and
4	advance—
5	(1) the modernization of the energy delivery in-
6	frastructure of the United States, and bolster the re-
7	liability, affordability, diversity, efficiency, security,
8	and resiliency of domestic energy supplies, through
9	advanced grid technologies;
10	(2) the modernization of the electric grid to en-
11	able a robust multi-directional power flow that
12	leverages centralized energy resources and distrib-
13	uted energy resources, enables robust retail trans-
14	actions, and facilitates the alignment of business and
15	regulatory models to achieve a grid that optimizes
16	the entire electric delivery system;
17	(3) relevant research and development in ad-
18	vanced grid technologies, including—

1	(A) energy storage;
2	(B) predictive tools and requisite real-time
3	data to enable the dynamic optimization of grid
4	operations;
5	(C) power electronics, including smart in-
6	verters, that ease the challenge of intermittent
7	renewable resources and distributed generation;
8	(D) real-time data and situational aware-
9	ness tools and systems; and
10	(E) tools to increase data security, physical
11	security, and cybersecurity awareness and pro-
12	tection;
13	(4) the leadership of the United States in basic
14	and applied sciences to develop a systems approach
15	to innovation and development of cyber-secure ad-
16	vanced grid technologies, architectures, and control
17	paradigms capable of managing diverse supplies and
18	loads;
19	(5) the safeguarding of the critical energy deliv-
20	ery infrastructure of the United States and the en-
21	hanced resilience of the infrastructure to all hazards,
22	including—
23	(A) severe weather events;
24	(B) cyber and physical threats; and

1	(C) other factors that affect energy deliv-
2	ery;
3	(6) the coordination of goals, investments to op-
4	timize the grid, and other measures for energy effi-
5	ciency, advanced grid technologies, interoperability,
6	and demand response-side management resources;
7	(7) partnerships with States and the private
8	sector—
9	(A) to facilitate advanced grid capabilities
10	and strategies; and
11	(B) to provide technical assistance, tools,
12	or other related information necessary to en-
13	hance grid integration, particularly in connec-
14	tion with the development at the State and local
15	levels of strategic energy, energy surety and as-
16	surance, and emergency preparedness, response,
17	and restoration planning;
18	(8) the deployment of information and commu-
19	nications technologies at all levels of the electric sys-
20	tem;
21	(9) opportunities to provide consumers with
22	timely information and advanced control options;
23	(10) sophisticated or advanced control options
24	to integrate distributed energy resources and associ-
25	ated ancillary services;

1	(11) open-source communications, database ar-
2	chitectures, and common information model stand-
3	ards, guidelines, and protocols that enable interoper-
4	ability to maximize efficiency gains and associated
5	benefits among—
6	(A) the grid;
7	(B) energy and building management sys-
8	tems; and
9	(C) residential, commercial, and industrial
10	equipment;
11	(12) private sector investment in the energy de-
12	livery infrastructure of the United States through
13	targeted demonstration and validation of advanced
14	grid technologies; and
15	(13) establishment of common valuation meth-
16	ods and tools for cost-benefit analysis of grid inte-
17	gration paradigms.

